Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes
نویسندگان
چکیده
We consider a nonlinear finite volume (FV) scheme for stationary diffusion equation. We prove that the scheme is monotone, i.e. it preserves positivity of analytical solutions on arbitrary triangular meshes for strongly anisotropic and heterogeneous full tensor coefficients. The scheme is extended to regular star-shaped polygonal meshes and isotropic heterogeneous coefficients.
منابع مشابه
Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملInterpolation-based second-order monotone finite volume schemes for anisotropic diffusion equations on general grids
We propose two interpolation-based monotone schemes for the anisotropic diffusion problems on unstructured polygonal meshes through the linearity-preserving approach. The new schemes are characterized by their nonlinear two-point flux approximation, which is different from the existing ones and has no constraint on the associated interpolation algorithm for auxiliary unknowns. Thanks to the new...
متن کاملMonotone finite volume schemes for diffusion equations on polygonal meshes
Weconstruct a nonlinear finite volume (FV) scheme for diffusion equationon star-shapedpolygonalmeshes andprove that the scheme ismonotone, i.e., it preserves positivity of analytical solutions for strongly anisotropic and heterogeneous full tensor coefficients. Our scheme has only cell-centered unknowns, and it treats material discontinuities rigorously and offers an explicit expression for the...
متن کاملEvaluation of the Finite-volume Solutions of Radiative Heat Transfer in a Complex Two-dimensional Enclosure with Unstructured Polygonal Meshes
Radiative heat transfer in a complex two-dimensional enclosure with an absorbing, emitting, and isotropically scattering gray medium is investigated by using the finite-volume method. In particular, an implementation of the unstructured polygonal meshes, based on an unstructured triangular system, is introduced, thereby reducing the computation time required for the analysis of thermal radiatio...
متن کاملMaximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes
Abstract In [22], two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in [23]. The extension...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2007